http://dspace.bsu.edu.ru/handle/123456789/45368
Title: | On the stability of stationary solutions in diffusion models of oncological processes |
Authors: | Debbouche, A. Polovinkina, M. V. Polovinkin, I. P. Valentim, C. A. David, S. A. |
Keywords: | matematics mathematical oncology differential equations diffusion models |
Issue Date: | 2021 |
Citation: | On the stability of stationary solutions in diffusion models of oncological processes / A. Debbouche [et al.] // The European Physical Journal Plus. - 2021. - Vol.136, №1.-Art. 131. |
Abstract: | We prove a sufficient condition for the stability of a stationary solution to a system of nonlinear partial differential equations of the diffusion model describing the growth of malignant tumors. We also numerically simulate stable and unstable scenarios involving the interaction between tumor and immune cells |
URI: | http://dspace.bsu.edu.ru/handle/123456789/45368 |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages) |
File | Description | Size | Format | |
---|---|---|---|---|
Polovinkin_Stability.pdf | 1.87 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.