Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/63516
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVasilyev, V.-
dc.contributor.authorZaitseva, N.-
dc.date.accessioned2024-08-29T07:56:12Z-
dc.date.available2024-08-29T07:56:12Z-
dc.date.issued2024-
dc.identifier.citationVasilyev, V. On hyperbolic equations with a translation operator in lowest derivatives / V. Vasilyev, N. Zaitseva // Mathematics. - 2024. - Vol.12, №12.-Art. 1896. - Doi: 10.3390/math12121896.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/63516-
dc.description.abstractIn the half-plane, a solution to a two-dimensional hyperbolic equation with a translation operator in the lowest derivative with respect to a spatial variable varying along the entire real axis is constructed in an explicit form. It is proven that the solutions obtained are classical if the real part of the symbol of a differential-difference operator in the equation is positiveru
dc.language.isoenru
dc.subjectmathematicsru
dc.subjectmathematical analysisru
dc.subjecthyperbolic equationsru
dc.subjectdifferential-difference equationsru
dc.subjecttranslation operatorru
dc.subjectclassical solutionru
dc.titleOn hyperbolic equations with a translation operator in lowest derivativesru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Vasilev_On Hyperbolic_24.pdf218.57 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.